Part I: (70 pts)

a. (10 pts) Write a PIC18 assembly code fragment to implement the following:
 int k;

 k = k – 1;

 movlw 0 ; w = 0;
 decf k,f ;decrement LSByte
 subwfb k+1,f ;decrement MSByte

b. (10 pts) Write a PIC18 assembly code fragment to implement the following:
 signed int j, k;
 char i;

 do {
 i++;
 }while (j > k);

 loop_top
 incf i,f; ;i++, a byte variable
 movf j,w ;w = LSByte of j
 subwf k,f ;k-j, LSByte
 movf j+1,w ;w = MSByte of j
 subwfb k+1,w ;k-j; MSByte;
 b volupt v_1 ;branch if v_1
 bn loop_top ;loop if v=0, N=1
 bra loop_exit ; exit otherwise

 V_1 bnn loop_top ;loop if V=1, N=0
 loop_exit
 ...rest of code....

c. (10 pts) Write a PIC18 assembly code fragment to implement the following:
 int k;

 k = k << 2;

 bcf STATUS, C
 rlf k,f
 rlr k+1,f ; k = k << 1
 bcf STATUS, C
 rlf k,f
 rlr k+1,f ; k = k << 1
d. (10 pts) Implement the ‘FILLSTR’ subroutine in PIC18 assembly language.

```assembly
; parameter block for fillstr
CBLOCK 0x20
s:2, c  ; s contains pointer to character string, c is fill character
ENDC

movf    s,w
movwf  FSR0L
movf   s+1,w
movwf  FSR0H ; FSR0 = s
loop
  movf  INDF0,w    ; *s == 0?  
   bz    exit       ; exit if zero
  movf  c,w
  movwf POSTINC0  ; *s = c, s++
   bra   loop
exit
  return
main
  movlw  low mystr
  movwf  s;
  movlw  high mystr
  movwf  s+1;
  movlw  0x20      ; space character
  movwf  c
  call   fillstr
  ...rest of code...
```

e. (10 pts) For each one of the following comparisons, indicate if the comparison is true or false.

- unsigned char i, j; i = 0x80; j = 0x34; i > j ??? TRUE FALSE
- signed char i, j; i = 0xB0; j = 0xA0; i > j ??? TRUE FALSE
- signed char i, j; i = 0xFF; j = 0x01; i > j ??? TRUE FALSE

For the 0xB0, 0xA0 case, visualize the number line. The value 0xB0 is to the right of 0xA0, so 0xB0 is greater than 0xA0. Or convert to decimal; 0xA0 = -96, 0xB0 = -80.
f. (10 pts) Write a PIC18 assembly code fragment to implement the following:
signed int j, k;
unsigned char i;

if (j != k) {
 i = i >> 1;
}

```
  movf k,w ;w = LSByte of j
  subwf j,f ;j-k, LSByte
  bnz if_body ;branch if Z=0
  movf k+1,w ;w = MSByte of j
  subwfb j+w,w ;k-j; MSByte;
  bz end_if ;branch if Z = 1
  if_body ; reach here if either subtraction nonzero
  bcf STATUS,C
  rrcf i,f ; i = i >> 1
  end_if
  ...rest of code....
```

g. (10 pts) Write a PIC18 assembly code fragment to implement the following:

signed char i;

i = i >> 1;

```
; This is a signed right shift, the sign bit must
; be kept the same
  bcf STATUS,C
  btfsc i,7 ;check sign bit
  bsf STATUS,C ;set carry, i is negative
  rrcf i,f ; do shift
  ...rest of code....
```
Part II: (40 pts) Answer 7 out of the next 9 questions. Cross out the 2 questions that you do not want graded.

1. Give the machine code for the fragment below:

   ```
   here   
   bra    here
   The bra will branch one instruction word backwards, or \( -1 \) (bra \( -1 \)), so machine code is: 0xD7FF
   ```

2. The value 0xE2 is a two's complement, 8-bit number. What is the decimal value?

 This is a negative number, as the MSB is set. So, magnitude is 0x00 \(-\) 0xE2 = 0x1E = \(2^{4} + 2^{2} = 20 \).
 Final answer is \(-20\).

3. The value of \(-128\) in 8 bits two’s complement is 0x80. What is the value as a 16-bit number?

 In 16-bits, must use sign extension, answer is 0xFF80.

4. Give the result of the operation 0xB3 + 0x9A, and the V, N, C, Z flag settings.

 \(0xB3 + 0x9A = 0x4D \), \(C = 1 \), \(V = 1 \) (\(-N + (-N) = +N \), wrong), \(N = 0 \), \(Z = 0 \)

5. Give the result of the operation 0x40 \(-\) 0xA3, and the V, N, C, Z flag settings

 \(0x40 - 0xA3 = 0x9D \), \(C = 0 \) (borrow), \(V = 1 \) (+N \(-\) (-N)) = (+N + (+N)), answer should be positive, but get a negative value, so answer is wrong.
 \(N = 1 \), \(Z = 0 \)

6. What range of two’s complement numbers can be encoded in 5 bits?

 \(+15\) to \(-16\) (\(+2^{4} - 1 \) to \(-2^{4} - 1 \))
7. When would a ‘goto’ instruction have to be used instead of a *bra* instruction?

If the jump target address was further away than +1023 or –1024 instruction words from the location of the bra instruction.

8. What are the table read/write instructions useful for?

Table reads are used to read a byte from program memory using the TBLPTR register. The value is read into the TABLAT register. They are useful for reading or writing values from/to program memory.

9. What is the limitation of the stack on the PIC18?

The stack can only store 31 return addresses. If 31 CALLS are made without a return, then the next call will cause stack overflow as there is no place to store the return address.