Part I: (64 pts)
 a. (5 pts) Write C code that configures PORTB for the IO shown in the figure for problem (a) on the Figure sheet. The internal weak pullup must be enabled. Do not assume any default bit values.

 b. (14 pts) Assuming the IO configuration of the previous problem, write a while(1){} loop that implements the LED/Switch IO state machine shown for problem (b) in the figures. Either use a switch() statement approach or a if-then-else approach. Assume you have available the DelayMs() function for blinking the LED; you do NOT have to include debounce delays for the switch input.
c. (20 pts) For the LED/Switch configuration shown in Figure (c), implement the flowchart of figure (c) in an interrupt driven manner. Divide your solution into two code segments -- an ISR, and main() code that includes initialization code for the interrupt system, variables used by the ISR, and initializes the LEDs to OFF. Any changes to an LED must be done within the ISR; the while(1) loop in main() will BE EMPTY; all of the work of changing the LED state is done in the ISR. This is possible because we are not blinking the LEDs and thus do not need any delays in the ISR. There are many solutions to this problem. Your ISR must be triggered by changes on the switch inputs; it cannot wait for a switch input change to occur.

1. (13 pts) ISR code (do not worry about debouncing the switch inputs).

2. (7 pts) main() code – you can assume PORT inputs/outputs and the weak pullup has been initialized. However, you must show your configuration code for the interrupt system, any variables you use, and turn the LEDs initially OFF. I will require that you disable interrupt priorities to keep things simple. Any interrupt flags you use must be initially cleared. Do not assume any default bit settings.
d. (5 pts) Assume an asynchronous serial channel with a baud rate of 38400, and an asynchronous data format of 1 start bit, 8 data bits, with 6 stop bits between characters. Compute the bandwidth of this channel inBYTES per SECOND.

e. (7 pts) Write C code that implements the char getch() function (receives one character from the serial port). No interrupts are enabled. Upon entry to the getch() function, check for UART overrun – if this has occurred then execute a software reset by using inline assembly code.

f. (8 pts) Write an ISR that is triggered by the arrival of a character in the USART and that places the incoming data into a circular buffer name buf. Assume the buffer has a maximum of 16 characters, and pointers named tail and head. The head pointer is used for placing data into the buffer, while the tail is used for taking data out of the buffer.
g. (5 pts) Write a C code fragment to go at the beginning of *main()* that detects if a power-on reset has occurred and prints out a message. You must also ensure that after a power-on reset has occurred, that it is not falsely detected again by a non-power-on reset.

Part II: (40 pts) Answer 9 out of the next 11 questions. Cross out the 3 questions that you do not want graded. Each question is worth 4 pts.

1. Given a voltage of 5 V, a clock freq of 30 MHz, and a current consumption of 15 mA, what is the new current consumption predicted by theory if the voltage is reduced to 3.5 V and the clock frequency to 20 MHz?

2. Write a C code fragment that puts the PIC18 into sleep mode. What is the principle reason for using sleep mode on a microcontroller?

3. Draw a picture that shows how tri-state buffers are used to implement a half-duplex communication channel
4. What is the SPBRG value for a baud rate of 57,600 assuming an FOSC of 30 MHz and
 high speed mode?

5. During normal PIC operation, how do you prevent the watch dog timer (WDT) from
 expiring?

6. What voltage levels (approximately) represent logic ‘0’ and logic ‘1’ in the RS232
 interface? Be specific.

7. How is reading the LATB register different from reading the PORTB register?
8. Write C code that configures the RB1/INT1 input as an enabled, low-priority interrupt, rising edge triggered. The priority system must be enabled and the RB1/INT1 interrupt enabled. Do not assume any default bit values.

9. Draw a diagram that shows how to measure the current flowing through the LED connected to PORT RB7 of figure (a). Be specific.

10. Using the definition of a circular buffer in problem (f), when does OVERFLOW of the circular buffer occur?

11. What registers are AUTOMATICALLY saved when a PIC18 interrupt occurs? Give the individual names.
To toggle an LED:
If it is ON, then turn it OFF.
If it is OFF, then turn it ON.