
Problem 3:
Calculate the de Broglie wavelength, λ, for:
(a) An electron with kinetic energy E_k of (i) 1.0 eV, and (ii) 100 eV
(b) A singly ionized tungsten atom with kinetic energy E_k of 1.0 eV.
(c) A 2000-kg truck traveling at 20 m/s.

Problem 4:
Formulate the Heisenberg uncertainty principle for the energy E (in class, we considered the uncertainty in the momentum p). Try to find an example of this principle (for the energy).

Problem 5:
When the uncertainty principle is considered, it is not possible to locate a photon in space more precisely than about one wavelength. Consider a photon with wavelength $\lambda=1 \mu$m. What is the uncertainty in the photon’s (a) momentum and (b) energy.

Problem 6:
The solution to Schrodinger’s wave equation for a particular one dimensional situation is given by:
$$\psi(x) = \sqrt{2/a_0} * e^{-x/a_0}$$
(1) Determine the probability of finding the particle between the following limits: $0 \leq x \leq a_0/4$
(2) Determine the probability density of finding the particle exactly at $x=0$, if $a_0=2$

Problem 7:
An electron in free space is described by a plane wave given by $\Psi(x,t)=Ae^{i(kx-\omega t)}$, where $k=1.5\times10^9$ m$^{-1}$ and $\omega=1.5\times10^{13}$ rad/s.
Considering the wave and particle properties of electron (wave-particle duality), calculate the wavelength, momentum, and kinetic energy (in eV) of this particular electron.